Nanometer-Scale Drug Synthesis: Innovations in Pharmaceutical Nanotechnology

Authors

  • Maulida Fajriyah Departement of Chemistry, Institute of Technology Bandung, Indonesia
  • Neng Rita Nurjannah Sekolah Pascasarjana, Universitas Padjadjaran
  • Nurul Ambardhani Study Program of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung
  • Nanda Raudhatil Jannah Study Program of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung

Keywords:

Drug Innovation, Nanotechnology, Drug Synthesis.

Abstract

Nanometer-scale drug development represents a new era in pharmaceutical technology, promising significant improvements in the efficacy and safety of treatments. Nanotechnology innovations in drug synthesis offer the potential to address existing global health challenges, including drug resistance and difficult-to-treat chronic diseases. However, the synthesis process at the nanometer scale faces significant obstacles, including biocompatibility issues, unclear regulations, and technical challenges in production. This research aims to explore and identify strategies to overcome these challenges, as well as assess the potential of nanotechnology innovation in the development of new drugs. The research method used is a descriptive qualitative approach, with data sourced from relevant previous literature. The data collected is then processed to gain an in-depth understanding of the research subject. The conclusions of this study indicate that although the challenges in nanometer-scale drug synthesis are significant, the potential for nanotechnology innovation in pharmaceuticals is revolutionary. Effective strategies to overcome these challenges include the development of new synthesis methods, advances in characterization techniques, and close interdisciplinary collaboration. Policies and regulations that support innovation are urgently needed to facilitate the development and implementation of these new medicines. Finally, the future of nanometer-scale medicine depends on increasing access and desirability, taking into account ethics and safety in product development.

References

Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., ... & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597.

Alsaiari, N. S., Alzahrani, F. M., Amari, A., Osman, H., Harharah, H. N., Elboughdiri, N., & Tahoon, M. A. (2023). Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules, 28(1), 463.

Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19, 1-26.

Barhoum, A., García-Betancourt, M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M., ... & Bechelany, M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12(2), 177.

Bell, E. L., Finnigan, W., France, S. P., Green, A. P., Hayes, M. A., Hepworth, L. J., ... & Flitsch, S. L. (2021). Biocatalysis. Nature Reviews Methods Primers, 1(1), 1-21.

Coughlan, C., Bruce, K. D., Burgy, O., Boyd, T. D., Michel, C. R., Garcia‐Perez, J. E., ... & Potter, H. (2020). Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Current Protocols in Cell Biology, 88(1), e110.

Dawson, K. A., & Yan, Y. (2021). Current understanding of biological identity at the nanoscale and future prospects. Nature nanotechnology, 16(3), 229-242.

Escudero, A., Carrillo-Carrión, C., Romero-Ben, E., Franco, A., Rosales-Barrios, C., Castillejos, M. C., & Khiar, N. (2021). Molecular bottom-up approaches for the synthesis of inorganic and hybrid nanostructures. Inorganics, 9(7), 58.

Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223-245.

Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., ... & Khan, M. I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.

Li, G., Lou, M., & Qi, X. (2022). A brief overview of classical natural product drug synthesis and bioactivity. Organic Chemistry Frontiers, 9(2), 517-571.

Liu, G., Yang, G., Peng, X., Wu, J., & Tsubaki, N. (2022). Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chemical Society Reviews, 51(13), 5606-5659.

Lovato, K., Fier, P. S., & Maloney, K. M. (2021). The application of modern reactions in large-scale synthesis. Nature Reviews Chemistry, 5(8), 546-563.

Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: A revolution in modern industry. Molecules, 28(2), 661.

Ndolomingo, M. J., Bingwa, N., & Meijboom, R. (2020). Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science, 55(15), 6195-6241.

Pala, R., Anju, V. T., Dyavaiah, M., Busi, S., & Nauli, S. M. (2020). Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. International Journal of Nanomedicine, 3741-3769.

Park, H., Otte, A., & Park, K. (2022). Evolution of drug delivery systems: From 1950 to 2020 and beyond. Journal of Controlled Release, 342, 53-65.

Patti, A., & Sanfilippo, C. (2020). Breaking molecular symmetry through biocatalytic reactions to gain access to valuable chiral synthons. Symmetry, 12(9), 1454.

Rogge, T., Kaplaneris, N., Chatani, N., Kim, J., Chang, S., Punji, B., ... & Ackermann, L. (2021). C–H activation. Nature Reviews Methods Primers, 1(1), 43.

Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V. K. S., Nair, M. P., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487.

Salvador, M., Gutiérrez, G., Noriega, S., Moyano, A., Blanco-López, M. C., & Matos, M. (2021). Microemulsion synthesis of superparamagnetic nanoparticles for bioapplications. International Journal of Molecular Sciences, 22(1), 427.

Szczyglewska, P., Feliczak-Guzik, A., & Nowak, I. (2023). Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles. Molecules, 28(13), 4932.

Turcheniuk, K., Bondarev, D., Amatucci, G. G., & Yushin, G. (2021). Battery materials for low-cost electric transportation. Materials Today, 42, 57-72.

Wainwright, C. L., Teixeira, M. M., Adelson, D. L., Braga, F. C., Buenz, E. J., Campana, P. R., ... & Wolfender, J. L. (2022). Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review. Pharmacological research, 177, 106076.

Zhang, L., Song, J., Kong, L., Yuan, T., Li, W., Zhang, W., ... & Du, G. (2020). The strategies and techniques of drug discovery from natural products. Pharmacology & Therapeutics, 216, 107686.

Downloads

Published

03-07-2024

How to Cite

Fajriyah, M. ., Nurjannah, N. R. ., Ambardhani, N. ., & Jannah, N. R. . (2024). Nanometer-Scale Drug Synthesis: Innovations in Pharmaceutical Nanotechnology. INFLUENCE: INTERNATIONAL JOURNAL OF SCIENCE REVIEW, 6(1), 141–149. Retrieved from https://influence-journal.com/index.php/influence/article/view/222